Lecture 14

Andrei Antonenko

March 05, 2003

1 Functions

In previous lectures we worked with algebraic structures — sets with operations defined on them. Now we will consider another important thing in mathematics — functions.

Let A and B be 2 sets. Function f from A to B can be considered as a rule, which allows us to get an element from B for any element from A. The notation for a function from the set A to the set B is: $f : A \to B$. Set A is called the **domain** of a function f. We will often use the following notation: $x \mapsto f(x)$, which denotes that x maps to f(x), i.e. applying f to x we get f(x).

Now let's consider any element x from A. Then $f(x) \in B$ is called the **image** of x. Moreover we can consider the subset $A' \subset A$. Then by f(A') we will denote the set which contains images of all the elements from A' and it will be called the **image** of A'.

Let's consider any subset in B, say, $B' \in B$. Then by $f^{-1}(B')$ we will denote all elements from A, whose images are in B'. $f^{-1}(B')$ will be called the **inverse image** of **preimage** of B'.

Example 1.1. Consider the function $f(x) = x^2$. This function is defined for any real number, and maps them to nonnegative real numbers. If \mathbb{R}_+ denotes positive numbers, then

$$f: \mathbb{R} \to \mathbb{R}_+ \cup \{0\},\$$

where $\mathbb{R}_+ \cup \{0\}$ is the set of all nonnegative numbers.

Image of the set [-2, 2] is the set [0, 4] = f([-2, 2]). Inverse image of the set [4, 25] is the set $[-5, -2] \cup [2, 5] = f^{-1}([4, 25])$.

Consider another important notion — composition of functions. Let $f: A \to B, g: B \to C$ are 2 functions. Then **composition** of f and g is the function which is denoted by $g \circ f$ such that $g \circ f: A \to C$, and

$$(g \circ f)(x) = g(f(x)).$$

We state here the obvious property of compositions: if $f: A \to B$, $g: B \to C$, and $h: C \to D$, then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Example 1.2. Consider $f : \mathbb{R}^2 \to \mathbb{R}$ such that $(x, y) \mapsto xy$, and $g : \mathbb{R} \to \mathbb{R}$ such that $x \mapsto x^3$. Then $g \circ f : \mathbb{R}^2 \to \mathbb{R}$ and $(g \circ f)(x, y) = g(f(x, y)) = g(xy) = (xy)^3$.

Now, let A be a nonempty set. The function $f : A \to A$ such that for any $x \in A$ we have f(x) = x is called the **identity function**. It will be denoted by I: I(x) = x.

Now let $f: A \to B$. Function $g: B \to A$ is called the **inverse function** for f if

 $(f \circ g)(x) = x \ \forall x \in B, \text{ and } (g \circ f)(x) = x \ \forall x \in A.$

Example 1.3. Let $f : \mathbb{R} \to \mathbb{R}_+ \cup \{0\}$ such that $f(x) = x^2$. Then $g(x) = \sqrt{x}$ is not an inverse: let's take x = -2, then $-2 \xrightarrow{f} 4 \xrightarrow{g} 2$.

But if we consider $f(x) = x^2$ only for nonnegative numbers, then $g(x) = \sqrt{x}$ will be the inverse.

All these definitions are basic definitions of mathematics, and are not specific for linear algebra.

2 Linear functions

Now, we will consider a class of functions, which is specific to linear algebra.

Let V and U are vector spaces.

Definition 2.1. Function $f: V \to U$ is called a **linear function** if the following 2 conditions are satisfied:

• For any vectors v and w from V

$$f(v+w) = f(v) + f(w)$$

• For any vector $v \in V$ and for any number $k \in \mathbb{R}$

$$f(kv) = kf(v)$$

Now we'll give some examples of linear functions.

Example 2.2. The identity function is a linear function. It is easy to see:

$$I(x + y) = x + y = I(x) + I(y)$$
$$I(kx) = kx = kI(x)$$

Example 2.3. Let's consider the zero-function — function $f : V \to V$ such that for any $v \in V$ f(v) = 0. This function is obviously a linear function.

Example 2.4 (Projection). Let's consider the space \mathbb{R}^3 , and let f be a function such that $f : \mathbb{R}^3 \to \mathbb{R}^3$, and

$$(x, y, z) \xrightarrow{f} (x, y, 0)$$

Then this is a linear function. Let's check the first property:

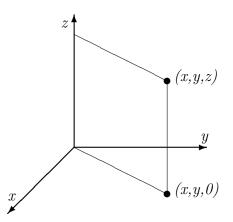
$$f(x_1, y_1, z_1) = (x_1, y_1, 0); \quad f(x_2, y_2, z_2) = (x_2, y_2, 0)$$

$$f(x_1 + x_2, y_1 + y_2, z_1 + z_2) = (x_1 + x_2, y_1 + y_2, 0) = f(x_1, y_1, z_1) + f(x_2, y_2, z_2).$$

And the second property:

$$f(kx, ky, kz) = (kx, ky, 0) = k(x, y, 0) = kf(x, y, z).$$

This function is called the projection. We can consider triplets of numbers as points in the 3-dimensional space, and then this function maps any point to its projection to the xy-plane.



Example 2.5. Consider the vector space of all polynomials \mathbb{P} . We'll give this definition which is familiar from the course of calculus.

Definition 2.6. The derivative of a polynomial

$$P(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_i t^i + \dots + a_1 t + a_0$$

is a polynomial

$$DP(t) = P'(t) = na_n t^{n-1} + (n-1)a_{n-1}t^{n-2} + \dots + ia_i t^{i-1} + \dots + a_1.$$

Let the function D is such that $D: \mathbb{P} \to \mathbb{P}$, and

$$D(p(t)) = p'(t),$$

i.e. the given polynomial maps to its derivative. This function is linear by basic properties of derivative:

$$(f+g)' = f' + g'$$
 and
 $(kf)' = kf'$

Now we'll state very easy result about linear functions.

Lemma 2.7. If f is a linear function, then $f(\mathbf{0}) = \mathbf{0}$.

Proof. Let $k \neq 0$. Then $f(k\mathbf{0}) = kf(\mathbf{0})$. Moreover, since $k\mathbf{0} = \mathbf{0}$, then $f(k\mathbf{0}) = f(\mathbf{0})$. So, comparing these two equalities, we have that $f(\mathbf{0}) = kf(\mathbf{0})$, so $f(\mathbf{0}) = \mathbf{0}$.

Example 2.8. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that f(x, y) = (x + 1, y + 2). Then this is not linear function, since the image of zero is not zero:

$$f(0,0) = (1,2) \neq (0,0).$$

Actually, all other properties do not hold here as well. For example, let u = (1,1), and let v = (1,0). Then f(u) = (2,3), f(v) = (2,2), and so, f(u) + f(v) = (4,5). But $f(u+v) = f(2,1) = (3,3) \neq (4,5)$.

Now we will consider the most important linear function which will be used widely in the future.

Example 2.9 (Matrix function). Let A be any $m \times n$ -matrix. Then we can define the function $F_A : \mathbb{R}^n \to \mathbb{R}^m$ by the following formula: if $v \in \mathbb{R}^n$ then $v \stackrel{F_A}{\longmapsto} Av$, where Av is a multiplication of a matrix A by a column-vector $(n \times 1$ -matrix) v.

Consider an example. Let
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix}$$
, so $F_A : \mathbb{R}^3 \to \mathbb{R}^2$. If $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, then

$$F_A(v) = Av = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ 3 \end{pmatrix}$$

So, the image of vector $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ is vector $Av = \begin{pmatrix} 8 \\ 3 \end{pmatrix}$.

This function is obviously linear:

$$F_A(u+v) = A(u+v) = Au + Av = F_A(u) + F_A(v),$$

$$F_A(ku) = A(ku) = k \cdot Au = kF_A(u).$$