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1 Functions

In previous lectures we worked with algebraic structures — sets with operations defined on

them. Now we will consider another important thing in mathematics — functions.

Let A and B be 2 sets. Function f from A to B can be considered as a rule, which allows

us to get an element from B for any element from A. The notation for a function from the set

A to the set B is: f : A → B. Set A is called the domain of a function f . We will often use

the following notation: x 7→ f(x), which denotes that x maps to f(x), i.e. applying f to x we

get f(x).

Now let’s consider any element x from A. Then f(x) ∈ B is called the image of x. Moreover

we can consider the subset A′ ⊂ A. Then by f(A′) we will denote the set which contains images

of all the elements from A′ and it will be called the image of A′.

Let’s consider any subset in B, say, B′ ∈ B. Then by f−1(B′) we will denote all elements

from A, whose images are in B′. f−1(B′) will be called the inverse image of preimage of B′.

Example 1.1. Consider the function f(x) = x2. This function is defined for any real number,

and maps them to nonnegative real numbers. If R+ denotes positive numbers, then

f : R→ R+ ∪ {0},

where R+ ∪ {0} is the set of all nonnegative numbers.

Image of the set [−2, 2] is the set [0, 4] = f([−2, 2]).

Inverse image of the set [4, 25] is the set [−5,−2] ∪ [2, 5] = f−1([4, 25]).

Consider another important notion — composition of functions. Let f : A → B, g : B → C

are 2 functions. Then composition of f and g is the function which is denoted by g ◦ f such

that g ◦ f : A → C, and

(g ◦ f)(x) = g(f(x)).

We state here the obvious property of compositions: if f : A → B, g : B → C, and h : C → D,

then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.
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Example 1.2. Consider f : R2 → R such that (x, y) 7→ xy, and g : R→ R such that x 7→ x3.

Then g ◦ f : R2 → R and (g ◦ f)(x, y) = g(f(x, y)) = g(xy) = (xy)3.

Now, let A be a nonempty set. The function f : A → A such that for any x ∈ A we have

f(x) = x is called the identity function. It will be denoted by I: I(x) = x.

Now let f : A → B. Function g : B → A is called the inverse function for f if

(f ◦ g)(x) = x ∀x ∈ B, and (g ◦ f)(x) = x ∀x ∈ A.

Example 1.3. Let f : R→ R+ ∪ {0} such that f(x) = x2. Then g(x) =
√

x is not an inverse:

let’s take x = −2, then −2
f7−→ 4

g7−→ 2.

But if we consider f(x) = x2 only for nonnegative numbers, then g(x) =
√

x will be the

inverse.

All these definitions are basic definitions of mathematics, and are not specific for linear

algebra.

2 Linear functions

Now, we will consider a class of functions, which is specific to linear algebra.

Let V and U are vector spaces.

Definition 2.1. Function f : V → U is called a linear function if the following 2 conditions

are satisfied:

• For any vectors v and w from V

f(v + w) = f(v) + f(w)

• For any vector v ∈ V and for any number k ∈ R

f(kv) = kf(v)

Now we’ll give some examples of linear functions.

Example 2.2. The identity function is a linear function. It is easy to see:

I(x + y) = x + y = I(x) + I(y)

I(kx) = kx = kI(x)

Example 2.3. Let’s consider the zero-function — function f : V → V such that for any v ∈ V

f(v) = 0. This function is obviously a linear function.
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Example 2.4 (Projection). Let’s consider the space R3, and let f be a function such that

f : R3 → R3, and

(x, y, z)
f7−→ (x, y, 0)

Then this is a linear function. Let’s check the first property:

f(x1, y1, z1) = (x1, y1, 0); f(x2, y2, z2) = (x2, y2, 0)

f(x1 + x2, y1 + y2, z1 + z2) = (x1 + x2, y1 + y2, 0) = f(x1, y1, z1) + f(x2, y2, z2).

And the second property:

f(kx, ky, kz) = (kx, ky, 0) = k(x, y, 0) = kf(x, y, z).

This function is called the projection. We can consider triplets of numbers as points in the

3-dimensional space, and then this function maps any point to its projection to the xy-plane.
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Example 2.5. Consider the vector space of all polynomials P. We’ll give this definition which

is familiar from the course of calculus.

Definition 2.6. The derivative of a polynomial

P (t) = ant
n + an−1t

n−1 + · · ·+ ait
i + · · ·+ a1t + a0

is a polynomial

DP (t) = P ′(t) = nantn−1 + (n− 1)an−1t
n−2 + · · ·+ iait

i−1 + · · ·+ a1.

Let the function D is such that D : P→ P, and

D(p(t)) = p′(t),

i.e. the given polynomial maps to its derivative. This function is linear by basic properties of

derivative:

(f + g)′ = f ′ + g′ and

(kf)′ = kf ′
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Now we’ll state very easy result about linear functions.

Lemma 2.7. If f is a linear function, then f(0) = 0.

Proof. Let k 6= 0. Then f(k0) = kf(0). Moreover, since k0 = 0, then f(k0) = f(0). So,

comparing these two equalities, we have that f(0) = kf(0), so f(0) = 0.

Example 2.8. Let f : R2 → R2 such that f(x, y) = (x + 1, y + 2). Then this is not linear

function, since the image of zero is not zero:

f(0, 0) = (1, 2) 6= (0, 0).

Actually, all other properties do not hold here as well. For example, let u = (1, 1), and let

v = (1, 0). Then f(u) = (2, 3), f(v) = (2, 2), and so, f(u) + f(v) = (4, 5). But f(u + v) =

f(2, 1) = (3, 3) 6= (4, 5).

Now we will consider the most important linear function which will be used widely in the

future.

Example 2.9 (Matrix function). Let A be any m × n-matrix. Then we can define the

function FA : Rn → Rm by the following formula: if v ∈ Rn then v
FA7−→ Av, where Av is a

multiplication of a matrix A by a column-vector (n× 1-matrix) v.

Consider an example. Let A =

(
1 2 1

0 3 −1

)
, so FA : R3 → R2. If v =




1

2

3


, then

FA(v) = Av =

(
1 2 1

0 3 −1

)


1

2

3


 =

(
8

3

)
.

So, the image of vector v =




1

2

3


 is vector Av =

(
8

3

)
.

This function is obviously linear:

FA(u + v) = A(u + v) = Au + Av = FA(u) + FA(v),

FA(ku) = A(ku) = k · Au = kFA(u).
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